derivation$20371$ - ترجمة إلى اليونانية
DICLIB.COM
أدوات لغة الذكاء الاصطناعي
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات بواسطة الذكاء الاصطناعي

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

derivation$20371$ - ترجمة إلى اليونانية

FUNCTION ON AN ALGEBRA WHICH GENERALIZES CERTAIN FEATURES OF DERIVATIVE OPERATOR
Antiderivation; Derivation (algebra); Superderivation; Anti-derivation; Homogeneous derivation; Derivation (abstract algebra); Derivation of an algebra

derivation      
n. παραγωγή, πηγή, καταγωγή

تعريف

derivation
n.
1.
Descent, genealogy, extraction.
2.
Etymology.
3.
Deriving, obtaining, deducing.
4.
Source (in), origination (from), foundation (in).

ويكيبيديا

Derivation (differential algebra)

In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : AA that satisfies Leibniz's law:

D ( a b ) = a D ( b ) + D ( a ) b . {\displaystyle D(ab)=aD(b)+D(a)b.}

More generally, if M is an A-bimodule, a K-linear map D : AM that satisfies the Leibniz law is also called a derivation. The collection of all K-derivations of A to itself is denoted by DerK(A). The collection of K-derivations of A into an A-module M is denoted by DerK(A, M).

Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on Rn. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold. It follows that the adjoint representation of a Lie algebra is a derivation on that algebra. The Pincherle derivative is an example of a derivation in abstract algebra. If the algebra A is noncommutative, then the commutator with respect to an element of the algebra A defines a linear endomorphism of A to itself, which is a derivation over K. That is,

[ F G , N ] = [ F , N ] G + F [ G , N ] {\displaystyle [FG,N]=[F,N]G+F[G,N]}

where [ , N ] {\displaystyle [\cdot ,N]} is the commutator with respect to N {\displaystyle N} . An algebra A equipped with a distinguished derivation d forms a differential algebra, and is itself a significant object of study in areas such as differential Galois theory.